8. Декартова прямоугольная система координат в пространстве.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом О и одинаковой масштабной единицей образуют декартову прямоугольную (кратко - прямоугольную) систему координат в пространстве. Оси упорядочены, т.е. указано, какая из осей считается первой (она называется  осью абсцисс и обозначается Ох), какая - второй (ось ординат Оу) и какая -третьей (ось аппликат Oz).

Различают  правую и левую системы декартовых прямоугольных координат (рис. 36, соответственно а, б). В этой книге принята правая система координат (будем называть ее  основной.

Орты осей Ox, Oy, Oz обозначают соответственно . Так как векторы компланарны, то они образуют базис (см.п. 6), который называется декартовым прямоугольным базисом.

В силу результатов п. 6 каждый вектор может быть, и притом единственным способом, разложен по декартовому прямоугольному базису , т.е. для каждого вектора найдется, и притом единственная, тройка чисел , такая что справедливо равенство

Числа называются декартовыми прямоугольными( или прямоугольными) координатами вектора .

Рис.36

Запись ( ) означает, что вектор : имеет декартовы прямоугольные координаты

Выясним геометрический смысл чисел . Используя теоремы 2 и 1 о проекциях (см. п. 7), имеем

Аналогично .

Следовательно, числа в формуле (7) являются проекциями вектора на координатные оси Ox, Oy,Oz соответственно.

Если М - произвольная точка в пространстве, то радиусом-вектором точки М назовем вектор , имеющий своим началом

начало О заданной системы координат, а концом эту точку.

Определение. Декартовыми прямоугольными координатами точки М называются проекции ее радиуса-вектора на соответствующие координатные оси; проекция на первую координатную ось называется абсциссой точки М, на вторую - , на третью - аппликатой :

x = , у = , z = . Символ М(х; у; z) означает, что точка М имеет координаты х, у, z.

Координатные плоскости (плоскости, проходящие через пары координатных осей) делят все пространство на восемь частей, называемых октантами, которые нумеруются следующим образом: октант, лежащий над первой четвертью плоскости хОу, - I; лежащий под ней - V; соответственно октанты, лежащие над и под второй четвертью плоскости хОу, - II и VI; над и под третьей четвертью - III и VII; над и под четвертой четвертью - IV и VIII.

Каждому октанту соответствует определенная комбинация знаков координат:

Отметим, что каждой точке пространства соответствует одна упорядоченная тройка действительных чисел (х; у; z) (ее координат). Верно и обратное: каждой упорядоченной тройке действительных чисел (х; у; z) соответствует одна точка пространства. Это означает, что в пространстве положение произвольной точки М полностью определяется ее координатами х; у; z. имеем = (Если точка М лежит в плоскости хОу, то = )

Пусть заданы две точки М11 ; у1; z1) и М22; у2; z2).

Рассмотрим вектор .

Имеем = (рис. 37). Отсюда в силу теоремы 2 (см. п.6) получаем   ( х2- х1 ; у2- у1; z2- z1 ).

Итак, чтобы найти координаты некоторого вектора, достаточно из координат его конца вычесть одноименные координаты его начала.

Пусть два ненулевых вектора

коллинеарны. В этом случае (см. п. 2) = ( - скаляр), что в силу следствия 2 из п. 7 равносильно трем равенствам

Это есть условие коллинеарности векторов.

Таким образом, векторы коллинеарны тогда и только тогда, когда их одноименные координаты пропорциональны.

Примечание. В равенстве (8) некоторые из знаменателей могут оказаться равными нулю. Напомним, что всякую пропорцию

понимаем в смысле равенства ad = be.

Так, например, равенства

Означают, что

.


Понятие вектора | Линейные операции над векторами | Понятие линейной зависимости векторов|

Линейная зависимость векторов на плоскостиЛинейная зависимость векторов в пространстве

Базис на плоскости и в пространстве | Проекция вектора на ось и ее свойства | Декартова прямоугольная система координат в пространстве| Цилиндрические и сферические координаты| Главная

Hosted by uCoz